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In uncertain environments, decision-makers can learn rewarding 
actions by trial-and-error to maximize their expected payoff (Fig. 
1a). An important challenge is that reward contingencies typi-

cally change over time, and thus a less-rewarded action at a given 
point in time can become more rewarding later (Fig. 1b). Versatile 
machine learning algorithms, known collectively as reinforcement 
learning (RL), describe the changing values of possible actions and 
the policy used to choose among them1. One biologically plausible 
class of RL models updates the expected values associated with pos-
sible actions sequentially based on the prediction error between 
obtained and expected reward—a learning scheme known as the 
Rescorla–Wagner rule2. At any given time point, the decision-maker 
chooses on the basis of the difference in expected value between  
possible actions, by selecting the action associated with the largest 
expected reward.

However, in volatile environments in which reward contingen-
cies change rapidly over time, human decision-makers make a sub-
stantial number of ‘non-greedy’ decisions that do not maximize 
the expected value predicted by reinforcement learning3 (in con-
trast to value-maximizing, ‘greedy’ decisions). Prominent theories 
describe these non-greedy decisions as the result of a compromise 
between exploiting a currently well-valued action versus exploring 
other, possibly better-valued actions—known as the exploration–
exploitation trade-off. In this view, information seeking motivates 
non-greedy decisions. Indeed, for a value-maximizing agent, lower-
valued actions are chosen less often and thus their expected values 
are more uncertain than those of higher-valued actions. Non-greedy 
decisions in favor of recently unchosen actions thus reduce uncer-
tainty about their current value and increase long-term payoff4. An 
important, implicit corollary of this view is that the underlying RL 
process updates action values without any internal variability after 
each obtained reward.

However, it has recently been shown that the accuracy of human 
perceptual decisions based on multiple sensory cues is bounded not 
by variability in the choice process, but rather by inference noise 
arising during the accumulation of evidence5,6. An intriguing pos-
sibility is that the learning process at the center of reward-guided 
decision-making might be subject to the same kind of computa-
tional noise, in this case random variability in the update of action 
values (Fig. 1c). Critically, the existence of intrinsic noise in RL 
would trigger non-greedy decisions owing to random deviations 
between exact applications of the learning rule and its noisy real-
izations following each obtained reward. In this view, an unknown 
fraction of non-greedy decisions would not result from overt infor-
mation seeking during choice, as assumed by existing theories  
and computational models, but from the limited precision of the 
underlying learning process.

To determine whether, and to what extent, learning noise drives 
non-greedy decisions during reward-guided decision-making, we 
first derived a theoretical formulation of RL that allows for random 
noise in its core computations. In a series of behavioral and neuro-
imaging experiments, tested on a total of 90 human participants, 
we then quantified the fraction of non-greedy decisions that could 
be attributed to learning noise, and identified its neurophysiologi-
cal substrates using functional magnetic resonance imaging (fMRI) 
and pupillometric recordings.

Results
Experimental protocol and computational model. We designed 
a restless, two-armed bandit game. In three experiments,  
human participants were asked to maximize their monetary payoff 
by sampling repeatedly from one of two reward sources depicted 
by colored shapes (Fig. 1a, see Methods). The payoffs that could  
be obtained from either shape were sampled from probability  
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distributions with means that drifted independently across trials, 
thereby encouraging participants to track these mean values over 
time (Fig. 1b).

To characterize the origin of non-greedy decisions made in this 
task, we derived a RL model (Fig. 1c, see Methods) in which the 
Rescorla–Wagner rule applied to update action values is corrupted 
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Fig. 1 | experimental paradigm and noisy RL model. a, Trial structure in the restless, two-armed bandit task divided into short blocks of trials. In each trial, 
participants were asked to choose one of two reward sources depicted by colored shapes, and then observed its associated outcome (from 1 to 99 points, 
converted into real financial incentives at the end of the experiment). b, Example of drifts in the magnitude of rewards that can be obtained from the two 
sources. Rewards were sampled from probability distributions with means that drifted independently across trials. Thick lines represent the drifting means of 
the two probability distributions, whereas thin lines correspond to reward samples drawn from the probability distributions that can be obtained if chosen in 
each trial. c, Graphical representation of the noisy RL model used to fit human behavior in the task. The Rescorla–Wagner learning rule applied to update action 
values is corrupted by additive random noise. The choice process is modeled using a stochastic softmax action selection policy. Learning noise is assumed to 
be negligible in exact RL models. Right: illustration of the fraction of non-greedy decisions predicted either by an exact RL model followed by a noisy RL model 
followed by a purely value-maximizing action selection policy (top; area shaded in blue), or by a softmax action selection policy (bottom; area shaded in 
purple). Exact and noisy RL models are indistinguishable based only on their predicted fraction of non-greedy decisions. d, Predicted relationship between the 
fraction of non-greedy decisions and the mutual information of successive decisions for the exact (purple) and noisy (blue) RL models. For the same fraction 
of non-greedy decisions, a noisy RL model predicts larger behavioral correlations (mutual information) across successive decisions than an exact RL model. 
e, Falsification of the exact RL model through model simulations. Simulated (bars) and observed (dot) fraction of non-greedy decisions (left) and mutual 
information of successive decisions (right). Pale gray dots indicate individual (participant-level) observations. Although the overall fraction of non-greedy 
decisions is captured well by both noisy and exact RL models, the observed mutual information is predicted more accurately by simulations of noisy RL than 
exact RL. Error bars, s.e.m. The statistical tests performed are two-tailed (paired) t-tests (experiment 1, n = 29). ***P < 0.001. n.s., non-significant (P > 0.2).
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by random noise with a standard deviation (s.d.) equal to a frac-
tion (ζ) of the magnitude of the prediction error. This multiplicative 
structure of the learning noise follows the ubiquitous Weber’s law 
of intensity sensation7 prevalent in numerous perceptual domains 
(including vision, numerosity and time) and in the magnitude of 
associated neural responses8,9. As in existing theories, we mod-
eled the choice process using a stochastic ‘softmax’ action selec-
tion policy, controlled by an inverse temperature, β. Importantly, 
the two sources of behavioral variability make different predictions 
regarding the temporal structure of decisions across successive  
trials. Indeed, learning noise corrupts the action values that are 
gradually updated across trials. By contrast, choice stochasticity 
reads out action values without altering them and is independently 
distributed across trials. Therefore, for the same fraction of non-
greedy decisions simulated using either learning noise or choice sto-
chasticity, learning noise engenders larger behavioral correlations 
across successive decisions (Fig. 1d).

Dominant contribution of learning noise to non-greedy deci-
sions. In the first neuroimaging experiment (experiment 1, n = 29), 
participants selected the shape associated with the largest true mean 
in the majority of trials (mean ± s.e.m., 64.9 ± 0.9%; t-test against 

chance, t28 = 17.2, P < 0.001). As anticipated, a substantial frac-
tion of decisions made were non-greedy decisions, which do not  
maximize expected value with respect to an exact (noise-free) RL 
model (15.7 ± 0.7%).

We performed Bayesian model selection (BMS) to quantify the 
contributions of learning- and choice-driven sources of variability 
to non-greedy decisions (Fig. 2a). Using particle filtering procedures 
to estimate the model evidence conditioned on human decisions 
(see Methods and Supplementary Modeling), we found that the RL 
model featuring both learning noise and a softmax action selec-
tion policy explained human behavior significantly better than RL 
models featuring either of these two sources of behavioral variabil-
ity (exceedance P = 0.996, see Supplementary Fig. 1 for a parameter 
knock-out procedure). To validate these findings, we implemented 
a model recovery procedure10, which confirmed that our BMS pro-
cedure was capable of correctly distinguishing learning noise from 
choice stochasticity in our task (Fig. 2b, see Supplementary Fig. 2 
for a parameter recovery procedure). We could also empirically 
falsify10 the exact RL model (Fig. 1e, see Methods): although both 
exact and noisy RL models fitted to human behavior accounted for 
the observed fraction of non-greedy decisions, the exact RL model 
predicted a lower mutual information between successive decisions  
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Fig. 2 | Contributions of learning noise and choice stochasticity to non-greedy decisions. a, bMS results in the partial outcome condition (left) and the 
complete outcome condition (right), pooled across experiment 1 and experiment 2 (total n = 59). Estimated model frequencies for exact RL (β, left bar), 
noisy RL with a softmax action selection rule (β and ζ, middle bar) and noisy RL with an argmax action selection rule (ζ, right bar). Noisy RL outperforms 
exact RL in both outcome conditions. Error bars, s.d. of the estimated Dirichlet distribution. Pexc, exceedance P value. b, Model recovery results in the 
partial outcome condition (left) and the complete outcome condition (right). Confusion matrices displaying the estimated model frequencies of exact 
and noisy RL (columns) obtained by simulations of exact and noisy RL (rows). bayesian model selection enables the simulated, ground-truth RL model to 
be accurately recovered in both outcome conditions. c, Fraction of non-greedy decisions explained by learning noise (blue area) and choice stochasticity 
(purple area) in the partial outcome condition (top) and the complete outcome condition (bottom). Learning noise alone explains more than half of  
non-greedy decisions in the partial outcome condition, and almost all non-greedy decisions in the complete outcome condition. d, Amounts of behavioral 
variability (expressed as s.d. on the difference between action values predicted by the noisy RL model) due separately to learning noise (bottom) and 
choice stochasticity (top) in the partial and complete outcome conditions. Noise-driven variability does not differ between the two outcome conditions, 
whereas choice-driven variability is strongly reduced in the complete outcome condition. Error bars, s.e.m. The statistical tests performed are two-tailed 
(paired) t-tests (experiment 1, n = 29). ***P < 0.001. n.s., non-significant (P > 0.2).
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(exact, 0.073 ± 0.008 bit; noisy, 0.111 ± 0.011 bit; paired t-test, t28 = 5.8,  
P < 0.001), substantially lower than the mutual information between 
successive human decisions (0.126 ± 0.016 bit).

Given the presence of both sources of behavioral variability, we 
quantified the precise contributions of learning noise and choice 
stochasticity to non-greedy decisions. For this purpose, we first 
estimated the trial-to-trial trajectories of latent action values cor-
rupted by learning noise conditioned on observed human decisions 
in each block (see Methods). We verified that trial-to-trial realiza-
tions of learning noise conformed to their distributional assump-
tions (see Supplementary Modeling). We then assessed the fraction 
of non-greedy decisions for which noisy realizations of the learn-
ing rule resulted in an opposite ranking of action values to exact 
applications of the same rule. This quantitative analysis revealed 
that learning noise alone explained as much as 60.6 ± 6.6% of non-
greedy decisions (Fig. 2c). This pattern of findings, fully replicated 
in an additional behavioral experiment (experiment 2, n = 30, see 

Supplementary Modeling), indicates that behavioral variability is 
driven to a large extent by random noise in the update of action val-
ues, rather than by stochasticity in the choice process. This pattern 
of findings is robust to alternative definitions of non-greedy deci-
sions, in particular based on the optimal model for learning action 
values in our task (Kalman filtering, see Supplementary Modeling).

Dissociating learning noise from information seeking. We then 
sought to dissociate the observed learning noise from information 
seeking. One obvious way of achieving this consists of showing 
that the behavioral variability stemming from learning noise is not 
aimed explicitly at seeking information about recently unchosen 
actions, the associated rewards of which have not been observed 
and are thus uncertain. To test this important prediction, we con-
trasted in both experiments the classical ‘partial outcome’ condi-
tion, in which participants observe only the reward yielded by the 
selected shape (Fig. 2c), with another ‘complete outcome’ condition, 
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in which participants additionally observe the foregone reward that 
would have been obtained if the other, unchosen shape had been 
selected11,12 (Fig. 2c). In this additional condition, performed by 
the same participants, there is by definition no incentive to explore 
(that is, to choose actions that do not maximize expected value), 
given that there is equal uncertainty about the values of chosen and 
unchosen actions.

Interestingly, participants made a lower, but still substantial, pro-
portion of non-greedy decisions in the complete outcome condition 
(partial, 15.7 ± 0.7%; complete, 11.9 ± 0.7%; paired t-test, t28 = −4.2, 
P < 0.001). BMS showed that the noisy RL model featuring a purely 
value-maximizing ‘argmax’ policy best explained human behavior 
(Fig. 2a, exceedance P > 0.999, see Supplementary Fig. 1 for a parame-
ter knock-out procedure). Consequently, and in contrast to what was 
observed in the partial outcome condition, learning noise explained 
almost all non-greedy decisions in this condition (86.1 ± 5.2%, com-
plete versus partial, paired t-test, t28 = 3.6, P = 0.001; Fig. 2c).

We further confirmed that the increased fraction of non-greedy 
decisions explained by learning noise is due to lower choice stochas-
ticity rather than to increased learning noise. Instead of comput-
ing the relative fraction of non-greedy decisions driven by learning 
noise, we estimated the absolute amount of behavioral variability 
due to learning noise and to choice stochasticity separately (Fig. 2d,  
see Methods). This analysis confirmed that choice-driven vari-
ability was reduced in the complete outcome condition (partial, 
0.078 ± 0.010; complete, 0.025 ± 0.007; paired t-test, t28 = −4.6, 
P < 0.001), whereas noise-driven variability did not differ between 
the two conditions (partial, 0.110 ± 0.010; complete, 0.093 ± 0.007; 
paired t-test, t28 = −1.2, P = 0.240, Bayes factor quantifying the evi-
dence in favor of the null hypothesis (BFH0) = 2.6). Together, these 
findings indicate that learning noise does not aim at seeking infor-
mation about recently unchosen actions. This pattern of findings 
was replicated in experiment 2 using the same experimental design 
(see Supplementary Modeling).

Dissociating learning noise from model misspecification. 
One important possible confounding factor is that part of the 

observed learning noise would be caused not by random devia-
tions around the proposed Rescorla–Wagner rule, but by system-
atic deviations from this canonical learning rule (in other words, 
a misspecification of our learning model). To decompose learn-
ing noise into random and systematic deviations, we ran a third, 
behavioral experiment (experiment 3, n = 30) in which we esti-
mated the consistency of human decisions across repetitions of the 
same sequence of rewards—that is, the fraction of trials in which  
the same decision was made in the two repeated blocks (Fig. 3a, 
see Methods).

We restricted this experiment to the complete outcome condi-
tion for two important reasons. First, we wanted behavioral vari-
ability to be driven solely by learning noise and not by a softmax 
action selection policy—a result replicated in this additional experi-
ment (exceedance P = 0.997). Second, we wanted the action val-
ues predicted by an exact RL model to be identical across the two 
repetitions of the same block, irrespective of the decisions made 
in the two repeated blocks. This was ensured by the observation 
that participants learned equally from chosen and foregone rewards  
(Fig. 3b, learning rate α, chosen: 0.571 ± 0.036, foregone: 
0.597 ± 0.038; paired t-test, t29 = 1.6, P = 0.123, BFH0 = 1.7).

We applied a recently developed statistical approach6  
(see Methods) to split the overall behavioral variability into a 
predictable bias term (reflecting systematic deviations from the 
Rescorla–Wagner rule) and an unpredictable variance term (reflect-
ing random deviations around this learning rule). In practice, the 
consistency of decisions across repeated blocks, which ranged from 
64.8% to 95.2% across participants (mean ± s.e.m., 82.3 ± 1.5%) 
and was essentially constant over the course of repeated blocks (see 
Supplementary Modeling), was used to estimate the bias–variance 
split of learning noise. Indeed, systematic deviations tend to increase 
the consistency of decisions across repeated blocks, whereas ran-
dom deviations tend to decrease self-consistency. Therefore, par-
ticipants with more learning noise should be less consistent across 
repeated blocks if learning noise reflects random deviations, but not 
if learning noise reflects systematic deviations (see Supplementary 
Modeling for simulations of misspecified models). We first 
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observed that participants with greater learning noise showed lower 
decision consistency across repeated blocks (Fig. 3c, linear correla-
tion, r2 = 0.829, d.f. = 28, P < 0.001). This supports our proposal that 
most of the learning noise captured by the model is due to random 
variability rather than to systematic deviations from the Rescorla–

Wagner rule. Consistently, the split that best accounted for the  
consistency of human decisions was 31.8 ± 3.2% for the bias term 
and 68.2 ± 3.2% for the variance term (Fig. 3d). This result indi-
cates that two-thirds of learning noise is not attributable to mis-
specifications of our model and supports our proposal that learning  
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Fig. 5 | Neural correlates of learning noise in the human brain. a, Top: ROIs (yellow) obtained for the switch minus repeat contrast corrected at a  
whole-brain family-wise error rate (FWE) of 0.05. Regions shaded in blue indicate the clusters that correlate significantly with learning noise at a  
cluster-wise corrected P value of 0.05. Neural correlates of learning noise overlap broadly with neural correlates of the switch minus repeat contrast. 
bottom: group-level parameter estimates for the learning noise regressor in each of the ROIs defined by the switch minus repeat contrast locked to the 
onset of the outcome period of trial t − 1 (left bar) and the choice period of trial t. Error bars, s.e.m. The statistical tests performed are two-tailed (paired) 
t-tests (experiment 1, n = 29). **P < 0.01. ***P < 0.001. n.s., non-significant (P > 0.2). b, Left: results of the whole-brain conjunction analysis of prediction 
error and learning noise at a cluster-wise corrected P value of 0.05. Only the dACC reflects simultaneously the learning signal (that is, the prediction error 
associated with the chosen action) and its trial-to-trial learning noise. Right: results of the finite impulse response analysis showing the temporal dynamics 
of prediction error and learning noise in dACC activity, locked to outcome presentation (left) and to the onset of the following choice period (right). 
The correlations between dACC activity and prediction error (green) and learning noise (blue) peak at approximately the same time following outcome 
presentation (dots ± error bars, jackknifed means ± s.e.m. for correlation peaks estimated separately for the two regressors). Thick horizontal lines indicate 
time windows in which parameter estimates diverge significantly from zero (cluster definition threshold P = 0.05, cluster-wise P < 0.001). The correlation 
between dACC and learning noise emerges significantly before the onset of the following choice period (jackknifed t28 = −2.7, P = 0.012). brain coordinates 
are expressed in Montreal Neurological Institute (MNI) coordinate space.
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noise primarily reflects the limited computational precision of 
reward-guided learning.

Explaining decision effects as consequences of learning noise. 
During sequential learning in volatile environments, humans make 
non-greedy decisions in favor of recently unchosen actions, but 
also show a tendency to repeat their previous decision over and 
above the difference between action values. This decision effect has 
been described in computational terms by an additional bias in the 
choice process, often termed choice hysteresis, which could have 
beneficial (stabilizing) properties for the decision-maker13–15. We 
realized that this effect falls naturally out of the statistical proper-
ties of learning noise, owing to intrinsic temporal correlations in the 
noise-corrupted action values used by the decision-maker. Using 
an exact RL model to fit human decisions, we observed a positive 
choice hysteresis in both partial and complete outcome conditions 
(t-test against zero: partial, t28 = 2.6, P = 0.013; complete, t28 = 5.0, 
P < 0.001). Critically, the choice hysteresis measured in participants 
correlated with the apparent choice hysteresis predicted by the noisy 
RL model (Fig. 4a, linear correlation: partial, r2 = 0.553, d.f. = 27, 
P < 0.001; complete, r2 = 0.425, d.f. = 27, P < 0.001). Furthermore, 
adding explicit choice hysteresis to the exact RL model provided a 
significantly worse account of human behavior than the noisy RL 
model in both outcome conditions (partial, exceedance P = 0.040; 
complete, exceedance P < 0.001). This finding supports our pro-
posal that choice hysteresis is not caused by an explicit bias in the 
choice process, but rather by learning noise that propagates through 
corrupted action values across successive decisions.

A second effect documented in the literature consists of an 
adjustment of choice stochasticity to surprise (that is, the magni-
tude of the prediction error in RL)16,17. Like choice hysteresis, this 
decision effect falls naturally out of learning noise, owing to its 
scaling with the magnitude of the prediction error. Using an exact 
RL model to fit human decisions, we observed a decreased choice 
sensitivity to action values (computed using a logistic regression of 
choice against model-predicted action values, see Methods) in tri-
als following larger-than-average prediction errors (Fig. 4b) in both 
partial and complete outcome conditions (paired t-test: partial, 
t28 = −2.9, P = 0.007; complete, t28 = −3.7, P < 0.001). Simulations 
of the noisy RL model fitted using an exact RL model featured 
the same adaptation to surprise (paired t-test: partial, t28 = −5.5, 
P = 0.001; complete, t28 = −8.9, P < 0.001). Importantly, the adapta-
tion predicted by simulations of the noisy RL model matched both 
the direction and the size of the adjustment observed in partici-
pants (paired t-test: partial, t28 = 0.2, P = 0.847, BFH0 = 5.0; complete, 
t28 = 0.3, P = 0.778, BFH0 = 4.9). Like choice hysteresis, adding an 
explicit adjustment of choice stochasticity to surprise provided a 
significantly worse account of human behavior than the noisy RL 

model (see Supplementary Modeling). These results suggest that the 
adaptation of choice stochasticity to surprise is caused by the mul-
tiplicative structure of learning noise, rather than by overt informa-
tion seeking following surprising outcomes.

Neural correlates of learning noise in the frontal cortex. To iden-
tify the neural mechanisms underlying this undocumented learn-
ing noise, we analyzed blood oxygen level-dependent (BOLD) fMRI 
data (experiment 1, n = 29) recorded while participants performed 
the task (see Methods). As documented in the literature, a classi-
cal network of brain regions implicated in cognitive control showed 
increased BOLD responses to switches away from the previous 
action18,19 (Fig. 5a and Supplementary Table 1), including the dorsal 
anterior cingulate cortex (dACC), the dorsolateral prefrontal cor-
tex (dlPFC), the frontopolar cortex (FPC) and the posterior parietal 
cortex (PPC).

Locked to outcome presentation, an overlapping brain network 
positively reflected the magnitude of learning noise—defined as 
trial-to-trial deviations from exact applications of the Rescorla–
Wagner rule (Fig. 5a, see Methods and Supplementary Modeling), 
including the dACC, the right dlPFC and the PPC (cluster-corrected 
P < 0.05, Supplementary Table 2). Importantly, a conjunction analy-
sis revealed that, among these three brain regions, only the dACC 
simultaneously reflected the magnitude of learning noise and the 
prediction error associated with the obtained reward (cluster-cor-
rected P < 0.05, Fig. 5b). To characterize the temporal dynamics of 
learning correlates in dACC activity, we constructed a finite impulse 
response model aligned either to the presentation of each outcome 
or to the presentation of the following choice (see Supplementary 
Modeling). The correlation of dACC activity with learning noise 
and prediction errors followed similar time profiles after outcome 
presentation (Fig. 5b). In the model aligned to the presentation of 
the following choice, the correlation of dACC activity with learn-
ing noise emerged significantly before choice onset (jackknifed 
t28 = −2.7, P = 0.012). Together, these results indicate that dACC 
responses to obtained rewards reflect the mean and variability of 
learning steps during the update of action values.

During the following choice period when learning noise trans-
lates into behavioral variability, the magnitude of learning noise was 
again reflected positively in the dACC and the right dlPFC, but was 
also reflected positively in the FPC and negatively in the ventrome-
dial prefrontal cortex (vmPFC) at a conservative statistical thresh-
old (family-wise error-corrected P < 0.05, Fig. 5a). Importantly, the 
dACC reflected learning noise equally strongly in the outcome and 
following choice periods (dACC, t28 = 0.8, P = 0.390, BFH0 = 3.6). 
By contrast, the right dlPFC, the FPC and the vmPFC reflected 
learning noise more strongly in the choice period than in the pre-
ceding outcome period (dlPFC t28 = 2.9, P = 0.008; FPC t28 = 3.1, 

Fig. 6 | Neural correlates of learning noise in choice-free, cued trials. a, Trial structure in cued trials (one-quarter of all trials). In cued trials, participants 
were required to select the highlighted action that was randomly pre-selected, and then observed its associated outcome (and the foregone outcome in 
the complete outcome condition) as in standard, free trials. b, Human behavior and learning in cued trials. Left: fraction of greedy (value-maximizing) 
actions in cued trials. As instructed, participants did not choose the highest-valued action in cued trials (dots indicate the average fraction of greedy 
actions found in free trials as reference) in either the partial outcome condition (left bar) or the complete outcome condition (right bar). Middle: fraction 
of actions matching the pre-selected shape in cued trials. As instructed, participants almost invariably selected the highlighted action in both the partial 
outcome condition (left bar) and the complete outcome condition (right bar). Right: learning rates associated with the selected action estimated in free 
trials (left bar) and cued trials (right bar). Learning rates did not differ between free and cued trials, indicating that participants learned equally from the 
two types of trials. c, Top: in contrast to Fig. 5, regions shaded in blue indicate the clusters that correlate significantly with learning noise in cued trials 
at a cluster-wise corrected P value of 0.05. Neural correlates of learning noise remain significant in cued trials in all ROIs except the vmPFC. bottom: 
group-level parameter estimates for the learning noise regressor (above) and the decision value regressor (below) in each of the ROIs defined by the 
switch minus repeat in free trials (left bar) and cued trials (right bar). The decision value regressor is defined as the value difference between selected 
and unselected actions. The correlation of bOLD activity with decision value is significantly reduced in cued trials in all ROIs, whereas the correlation with 
learning noise is unchanged in all ROIs except the vmPFC. Error bars, s.e.m. The statistical tests performed are two-tailed (paired) t-tests (experiment 1, 
n = 29). *P < 0.05. **P < 0.01. ***P < 0.001. n.s., non-significant (P > 0.2 unless indicated otherwise).
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P = 0.005; vmPFC t28 = −3.3, P = 0.003). Together, this pattern of 
findings assigns a unique position to the dACC among the neural 
correlates of learning noise: in addition to its correlation with the 
mean and variability of learning steps during the update of action 
values, dACC activity reflects learning noise with the same intensity  
during the following choice period when learning noise triggers 
behavioral variability.

Dissociating neural correlates of learning noise from choice. To 
rule out the possibility that what is captured as learning noise arises 
from a non-modeled property of the choice process, experiment 1 
included not only choice trials, in which subjects could select the 
option they wanted to sample, but also cued trials, in which subjects 

were required to select one of the two shapes (Fig. 6a, see Methods). 
In these cued trials, there is by definition no choice to be made, and 
indeed participants invariably selected the cued shape (Fig. 6b, par-
tial, 98.3 ± 0.3%; complete, 96.6 ± 0.5%). Nevertheless, BMS revealed 
that participants learned equally from obtained rewards in choice 
and cued trials (αcued = αchoice versus αcued = 0, partial, BF ≈ 10208.6, 
exceedance P > 0.999; complete, BF ≈ 10223.4, exceedance P > 0.999), 
and that learning is corrupted by the same noise in cued trials as in 
choice trials (ζcued = ζchoice versus ζcued = 0, partial, BF ≈ 108.3, exceed-
ance P > 0.999; complete, BF ≈ 1010.5, exceedance P > 0.999).

We then tested whether the neural correlates of learning noise 
found during the choice period were also present in cued trials 
(Fig. 6c, see Supplementary Modeling). The positive correlation 
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between BOLD activity and learning noise remained highly sig-
nificant and unchanged in cued trials in the dACC (cued, t28 = 3.6, 
P = 0.001; cued versus choice, t28 = −0.3, P = 0.760, BFH0 = 4.8), the 
right dlPFC (cued t28 = 6.0, P < 0.001; cued versus choice t28 = 0.8, 
P = 0.404, BFH0 = 3.7) and the FPC (cued t28 = 4.0, P < 0.001; cued 
versus choice, t28 = −0.4, P = 0.677, BFH0 = 4.7). This finding further 
strengthens our proposal that the learning noise fitted by our noisy 
RL model reflects variability in the update of action values, rather 
than an unknown property of the choice process.

Relating neural correlates of learning noise to behavioral vari-
ability. Our neuroimaging results so far indicate that BOLD activity 
in several brain regions (the dACC, the right dlPFC, the PPC, the 
FPC and the vmPFC) reflects learning noise. An important ques-
tion therefore arises as to whether these different brain regions 
differ in their relationship with the resulting behavioral variability. 
To address this important question, we formulated a brain–behav-
ior analysis to predict behavioral variability on the basis of trial-
to-trial BOLD fluctuations in these five regions of interest (ROIs) 
(see Methods). We reasoned that a neural signal reflecting learning 
noise should decrease the sensitivity of participants to action values 
and influence the decisions of participants in the complete outcome 
condition, in which the choice process does not generate any behav-
ioral variability. A fully factorial analysis (Fig. 7a), validated through 
model recovery (Fig. 7b), identified two active ROIs: the dACC 
(family-wise P > 0.999) and the vmPFC (family-wise P = 0.630).

Computing parameter estimates for the model including 
the dACC and the vmPFC in the partial outcome condition  
(Fig. 7c) revealed a negative effect of dACC fluctuations on sensitiv-
ity (β = −0.185 ± 0.026, t28 = −7.2, P < 0.001), and a positive effect of 
vmPFC fluctuations on the same metric (β = 0.062 ± 0.026, t28 = 2.4, 
P = 0.023). The effect of the dACC was substantially larger in abso-
lute magnitude than that of the vmPFC (t28 = 4.2, P < 0.001), and 
conformed to the first signature of a neural signal reflecting learn-
ing noise (Fig. 7d). Furthermore, the modulation of sensitivity by 
dACC responses was also negative in the complete outcome condi-
tion (Fig. 7c, β = −0.170 ± 0.023, t28 = −7.4, P < 0.001). Importantly, 
the effects observed in the two conditions were similar (t28 = 0.5, 
P = 0.635, BFH0 = 4.6), in line with the second signature of a neural 
signal reflecting learning noise. Together, these results support our 
proposal that dACC fluctuations reflect learning noise (which was 
present in both conditions) rather than choice stochasticity (which 
was negligible in the complete outcome condition).

Finally, we tested whether the negative modulation of sensitiv-
ity by dACC responses could be caused not by random fluctua-
tions of action values (as predicted by learning noise), but rather by 
directed fluctuations in the value of switching away from the previ-
ous action (as predicted by adjustments of the exploration–exploita-
tion trade-off). A factorial analysis including these two effect types 
(see Methods) revealed a selective effect of dACC responses on 
sensitivity (family-wise P > 0.999), without any measurable effect 
on the value of switching (family-wise P < 0.001). This selective 
brain–behavior relationship indicates that trial-to-trial fluctuations 
in dACC activity reflect learning noise rather than adjustments of 
the exploration–exploitation trade-off.

Pupil-linked neuromodulatory correlates of learning noise. In 
addition to frontal cortical contributions to non-greedy decisions, 
past research has identified the locus coeruleus–norepineph-
rine (LC–NE) system as a reliable neurophysiological correlate of 
behavioral variability20. Large phasic responses of LC neurons are 
associated with task disengagement and non-greedy decisions21,22. 
Although existing theories describe these effects as adjustments of 
the exploration–exploitation trade-off23, we postulated that trial-
to-trial fluctuations in the computational precision of update steps, 
reflected by dACC activity, could be mediated by neuromodula-
tory fluctuations driven by the LC–NE system. Because LC activity 
is notoriously difficult to measure by fMRI, we took advantage of 
the strong, known correlation between LC activity and phasic pupil 
dilation24 recorded in experiment 2 (n = 24 participants with clean 
pupillometric data).

In line with the literature, we observed that a switch away from 
the previous action was associated with larger pupillary dilation 
than repeating the previous action (Fig. 7e; from −2.0 to 2.9 s fol-
lowing choice presentation, cluster-corrected P < 0.001). Pupillary 
dilation in the same time window correlated positively with the 
magnitude of learning noise corrupting the preceding update step 
(Fig. 7e, from −2.0 to 2.2 s following choice presentation, cluster-
corrected P < 0.001). Like dACC responses, pupillary dilation cor-
related significantly with learning noise well before choice onset 
(t-test against zero, jackknifed t23 = −11.1, P < 0.001).

We then tested the relationship between trial-to-trial pupillary 
fluctuations and behavioral variability using the brain–behav-
ior analysis previously applied to dACC responses (Fig. 7f, see 
Supplementary Modeling). This analysis indicated that pupillary 
dilation predicts both random fluctuations in sensitivity and directed 

Fig. 7 | Brain–behavior and pupillometric analyses. a, Left: schematic illustration of the brain–behavior relationship predicted by a neural correlate of 
learning noise. Trial-to-trial variability in the amplitude of bOLD responses (shaded in blue) should correlate negatively with trial-to-trial variability in the 
sensitivity to action values predicted by exact application of the Rescorla–Wagner rule in the previous trial. Right: results of the full factorial brain–behavior 
analysis including the five ROIs identified in Fig. 5. Family-wise probability is defined as the probability that each ROI modulates sensitivity independently 
of the involvement of other ROIs. Only the dACC and the vmPFC have family-wise probabilities exceeding 1%. b, Model recovery results for the full 
factorial brain–behavior analysis. Confusion matrix displaying the estimated family-wise probabilities (columns) obtained for simulations of selective 
(single ROI) sensitivity modulations (rows). black arrows indicate the two ROIs (dACC and vmPFC) with detected brain–behavior relationships in the 
data. c, Participant-level parameter estimates for the winning model including the dACC (left) and the vmPFC (right) in the partial outcome condition (left 
bars) and the complete outcome condition (right bars). Sensitivity to action values correlates negatively with dACC activity and positively with vmPFC 
activity in both outcome conditions. Pale blue dots indicate individual (participant-level) estimates. d, Psychometric brain–behavior predictions for the 
dACC ROI. Predicted (lines) and human (dots) psychometric curves for small (first tercile) and large (third tercile) dACC responses. both predicted and 
human curves show a decreased sensitivity to action values for larger dACC responses. Inset: sensitivity estimates for small (left bar) and large (right bar) 
dACC responses. bars ± error bars, jackknifed means ± s.e.m. e, Top: results of the switch minus repeat contrast for pupillary dilation. Pupillary dilation 
increases significantly before switches. bottom: results of the finite impulse response analysis showing the temporal dynamics of learning noise (blue) and 
decision value (purple) in pupillary dilation, locked to the onset of the choice period. The correlation between pupillary dilation and learning noise emerges 
significantly before the onset of the choice period. Thick horizontal lines indicate time windows in which parameter estimates diverge significantly 
from zero at a temporal cluster-wise corrected P value of 0.01. f, Participant-level parameter estimates for pupil-linked modulations of sensitivity (left) 
and switching value or criterion (right) in the partial outcome condition (left bars) and the complete outcome condition (right bars). Pupillary dilation 
correlates negatively with sensitivity and positively with switching value, without a significant difference between conditions (sensitivity, t28 = 0.3, 
P = 0.791; switching value, t28 = 1.5, P = 0.152). Error bars, s.e.m. The statistical tests performed are two-tailed (paired) t-tests (experiment 1, n = 29). 
*P < 0.05. **P < 0.01. ***P < 0.001. n.s., non-significant (P > 0.2 unless indicated otherwise).
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fluctuations in the value of switching in the partial outcome condi-
tion (random, family-wise P > 0.999, β = −0.132 ± 0.035, t23 = −3.8, 
P = 0.001; directed, family-wise P = 0.995, β = 0.130 ± 0.038, t23 = 3.4, 
P = 0.002). By contrast, in the complete outcome condition, pupil-
lary dilation predicts random fluctuations in sensitivity (family-wise 
P > 0.999, β = −0.146 ± 0.043, t23 = −3.4, P = 0.002), but no directed 
fluctuations in the value of switching (family-wise P = 0.095, 
β = 0.067 ± 0.042, t23 = 1.6, P = 0.129). Together, these results indi-
cate that pupillary fluctuations reflect learning noise over and above 
adjustments of the exploration–exploitation trade-off.

Discussion
Maximizing rewards in volatile environments requires an agent to 
trade the exploitation of currently best valued actions against the 
exploration of recently unchosen, and thus more uncertain, ones. 
Here we sought to contrast existing information-seeking accounts 
with another possible source of behavioral variability: the limited 
computational precision of the learning process, which updates 
the expected values of possible actions following each reward.  
By decomposing behavioral variability into these two compo-
nents using our noisy RL model, we show that more than half of  
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non-greedy decisions are triggered by random noise in the  
learning process, rather than by an overt drive to seek information 
during choice.

This finding requires a reconsideration of the very nature of non-
greedy decisions in volatile environments. In addition to noise in 
action selection and lapses in attention, which were both negligible 
in our task (see Supplementary Modeling), these non-greedy deci-
sions have traditionally been regarded as exploratory and informa-
tion-seeking, and they should therefore happen only when there 
is uncertainty regarding the current value of recently unchosen 
actions. In accordance with this view, we found that the fraction 
of non-greedy decisions labeled as choice-driven by our noisy RL 
model depends critically on the absence of knowledge about the 
outcome of the foregone action on each trial. By contrast, noise-
driven variability in action values did not depend on knowledge 
about the foregone action, suggesting that it reflects a core char-
acteristic of human learning rather than a feature that can be sup-
pressed when the resulting behavioral variability is not useful14. In 
this sense, learning noise resembles the internal corruptive noise 
found in canonical decision-theoretic models, ranging from signal 
detection theory to sampling-based theories of inference3,25. The 
moderate consistency of human decisions across identical blocks 
excluded the possibility that learning noise is primarily due to a 
misspecification of our learning model6,26.

The analysis of BOLD signals provided further information 
about the neural mechanisms underlying the observed learning 
noise. BOLD activity in a well-documented cognitive control net-
work centered on the dACC correlates positively with trial-to-trial 
deviations from the exact application of the canonical Rescorla–
Wagner rule, even when participants were cued to select a ran-
domly determined action, and thus did not choose. These neural 
correlates of learning noise differ fundamentally from neural  

correlates of computational quantities associated with RL  
(for example, prediction errors or expected values), in the sense that 
learning noise is neither computed explicitly by our noisy RL model 
nor thought to be represented in any brain region. Our noisy RL 
model updates action values with a limited precision, and thus trial-
to-trial deviations of each update step from the average reflect the 
effective variance (inverse precision) of the learning rule. Therefore, 
neural correlates of learning noise should be interpreted as brain  
regions with activations that scale with the effective variability 
of learning steps, not as brain regions that encode or represent  
learning noise explicitly.

Several previous studies have linked the frontal cortex to explo-
ration and foraging across species3,11,19, but the specific contribu-
tions of different regions have remained unclear. Although several 
regions showed larger responses during switches, our brain–behav-
ior analysis revealed that only dACC fluctuations exhibit psycho-
metric signatures of learning noise. Such a positive relationship 
between dACC activity and learning noise may seem at first incon-
sistent with a causal role of this region in learning27,28. However, sev-
eral recent findings support the idea of learning-specific variability 
triggered by the dACC. At the theoretical level, the metaplastic syn-
apses in the dACC that are thought to account for adaptive learning 
in volatile environments go through stochastic transitions between 
states of faster and slower learning29. Neural circuits endowed 
with such synaptic properties should reflect prediction errors at  
multiple time scales, as recently observed in the dACC30, and pro-
duce behavioral variability with the same statistical signatures as 
learning noise.

An intriguing possibility is that computational noise may confer 
beneficial properties to learning in volatile5 or high-dimensional 
environments, as shown in the machine learning literature31,32. 
The structure of learning noise has choice-stabilizing properties 
and produces an adjustment of exploration to surprise without 
requiring its explicit monitoring. Beyond these intrinsic benefits, 
computational noise in RL may also optimize a second trade-off 
between the marginal payoff of a computation and the cost associ-
ated with performing the computation at a certain precision. The 
dACC has recently been proposed to reflect a similar process by 
monitoring an expected value of control, defined as the differ-
ence between expected payoff and associated cost (cognitive con-
flict, in particular)18. Instead of assuming that patterns of dACC 
activity explicitly represent such cost, we propose that the cost 
associated with a computation may be reflected implicitly by its 
precision (Fig. 8a). This proposal provides a natural explanation as 
to why learning is subject to limited computational precision, but 
also makes testable predictions. In particular, increasing volatility 
reduces the marginal payoff of learning (which, in the limit case, 
tends towards zero) and thus decreases the precision, which opti-
mizes the payoff–cost trade-off (Fig. 8b). We therefore predict that 
participants should feature not only increased learning rates33, but 
also increased learning noise, in more volatile environments. In 
this view, the increased dACC activity observed at increased levels 
of volatility31 would be a signature of the increased learning noise 
predicted in such conditions.

Based on previous findings, we reasoned that learning noise may 
be linked to the ongoing state of the LC–NE system20,34. Indeed, 
LC neurons receive strong projections from the dACC, which in 
turn produce gain control in several frontal regions implicated 
in reward-guided learning24,35. Pupil-linked fluctuations of the  
LC–NE state are associated with task disengagement and non-
greedy decisions36,37. Existing theories have interpreted these find-
ings as evidence of a role for the LC–NE system in controlling the 
exploration–exploitation trade-off, for which there is only partially 
conclusive evidence so far23,36. We proposed that the LC–NE sys-
tem may instead mediate the relationship between dACC activity 
and learning noise. In line with this hypothesis, we observed that  
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Fig. 8 | Proposed payoff–cost trade-off on learning precision. a, Illustration 
of the proposed payoff–cost trade-off. Top: schematic illustration of the 
dependencies between learning precision 1/ζ (x axis) and the marginal 
payoff of learning (gray curve) and the computational cost of learning 
(red curve). The marginal payoff of learning saturates at high precisions, 
whereas its computational cost grows exponentially. bottom: payoff minus 
cost trade-off showing an optimal learning precision that maximizes the 
difference between payoff and cost. b, Illustration of the effect of volatility 
on the proposed payoff–cost trade-off. Top: increasing volatility decreases 
the marginal payoff of learning (from lighter to darker gray curves). 
bottom: increasing volatility decreases the optimal learning precision that 
maximizes the difference between payoff and cost (from lighter to darker 
blue curves).
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pupillary dilation predicts not only the value of switching away from 
the previous action, but also the sensitivity of participants to action 
values. This relationship between pupillary dilation and sensitiv-
ity supports the idea that the LC–NE system controls the proposed 
payoff–cost trade-off by adjusting the computational precision of 
learning. The recent observation that pupillary dilation increases 
at high levels of volatility38 (that is, when the optimal learning pre-
cision decreases) provides indirect evidence for this idea, which 
should be tested formally in future work.

Together, our findings reveal a large source of behavioral vari-
ability in reward-guided decision-making, driven by computational 
noise in the underlying learning process. This noise-driven source 
of non-greedy decisions is independent of the arbitration between 
the exploitation of better-valued actions against the exploration of 
more uncertain ones. As we have shown, the decomposition of non-
greedy decisions into noise- and choice-driven components has 
important consequences for understanding the mechanisms under-
lying reward-guided behavior and its neurophysiological substrates. 
Existing models of learning should be revised to allow for noise 
in their core computations, and include a cost–benefit trade-off  
regulating their precision.
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Methods
Participants. Experiment 1 (neuroimaging) included 30 participants (16 women, 
age 26.0 ± 5.5 years, all right-handed). Participants had no history of neurological 
or psychiatric disease and had normal or corrected-to-normal vision. One 
participant was excluded from all analyses due to chance-level performance. 
Experiment 2 (behavioral) included 30 participants (17 women, age 23.6 ± 4.6 
years). Six participants were excluded from pupillometric analyses because 
of a large amount of missing data (eye blinks, head movements). Experiment 
3 (behavioral) included 30 participants (19 women, age 24.2 ± 3.7 years). No 
statistical methods were used to predetermine sample sizes but our sample sizes 
are similar to, or larger than, those reported in previous publications3,6,12. All 
tested participants gave written informed consent before taking part in the study, 
which received ethical approval from relevant authorities (Comité de Protection 
des Personnes Ile-de-France VI, ID RCB: 2007-A01125-48, 2017-A01778-45). 
Participants received fixed monetary compensation for their participation in the 
study, and an additional bonus of up to €10 based on the number of points earned 
at the end of the experiment.

Experimental protocol. In all three experiments, we asked participants to play a 
restless, two-armed bandit game. In practice, participants were asked to maximize 
their monetary payoff by sampling repeatedly from one of two reward sources 
depicted by colored shapes. Experiments were divided into short blocks of trials, 
each involving a new pair of colored shapes (56 trials per block in experiments 1 
and 3, 96 trials per block in experiment 2). In each trial, participants were asked 
to choose one of the two shapes presented to the left and right of fixation by 
pressing one of two buttons with their left or right index finger, and then observed 
its associated outcome (Fig. 1a). Participants were asked to favor precision over 
speed, and no time limit was imposed on the latency of their responses (for task 
instructions, see Supplementary Note).

The payoffs that could be obtained from either shape (from 1 to 99 points) 
were sampled from probability distributions with means that followed a random 
walk process (Fig. 1b). More precisely, the mean payoff on trial t r̂t

I
 was 

sampled from a beta distribution with shape parameters α ¼ 1þ r̂t�1 exp τð Þ
I

 and 
β ¼ 1þ 1� r̂t�1ð Þexp τð Þ
I

. This parameterization corresponds to a mode equal 
to r̂t−1 and a spread growing monotonically with τ, fixed to 3.0 across all three 
experiments. The obtained payoff on trial t rt was sampled from another beta 
distribution with shape parameters α ¼ 1þ r̂t exp ωð Þ

I
 and β ¼ 1þ 1� r̂tð Þexp ωð Þ

I
.  

This parameterization corresponds to a mode equal to r̂t
I

 and a spread growing 
monotonically with ω, fixed to 1.5 in experiments 1 and 3, and varied between 1.0 
and 2.0 (counter-balanced across blocks) in experiment 2. Parameter τ controls the 
long-term volatility of the random walk process followed by mean payoffs, whereas 
parameter ω controls the instantaneous uncertainty about the mean payoff r̂t

I
 

based only on the observation of the payoff rt obtained in trial t.
In experiments 1 and 2, for half of the blocks (four of 8), the reward obtained  

in each trial from the chosen shape was presented simultaneously with the 
foregone reward that could have been obtained from the unchosen shape—referred 
to as the complete outcome condition12. For the other half, only the obtained 
reward was presented—referred to as the partial outcome condition. In experiment 
3 (16 blocks in total), participants were always presented with both obtained and 
foregone rewards (that is, the complete outcome condition). Unknown  
to participants, half of the blocks (replay blocks) corresponded to exact  
repetitions of reward sequences presented in the other half (seed blocks,  
Fig. 3a): the fifth block was an exact repetition of the first block, the sixth  
block an exact repetition of the second block, and so on. Experiment 1 included 
not only the choice trials described above, in which participants could select the 
option they wanted to sample, but also cued trials (25% of all trials, Fig. 6a),  
in which participants were required to select one of the two shapes  
(pre-selected randomly).

In experiments 1 and 2, partial outcome and complete outcome blocks were 
presented in a pseudo-randomized order across participants. The trajectories of 
mean and obtained payoffs were generated independently for each participant and 
each block using the procedure described above. During data collection, tested 
participants were not blinded to the experimental condition (that is, they could 
either clearly observe or not observe the foregone reward that could have been 
obtained from the unchosen shape), whereas experimenters were blinded (that is, 
they were not in the room during experimental blocks). None of the analyses was 
performed blind to the experimental conditions.

Computational model. To characterize the origin of non-greedy decisions made 
in this task, we derived a RL model in which the Rescorla–Wagner rule applied to 
update the value (expected reward) Qt−1 associated with the chosen action at−1 is 
corrupted by additive random noise εt:

Qt ¼ Qt�1 þ α rt�1 � Qt�1ð Þ þ εt

where α is the learning rate used to update action values based on the prediction 
error between obtained reward rt−1 and expected reward Qt−1 on the previous trial, 
and εt is drawn from a normal distribution with zero mean and s.d. σt equal to a 
constant fraction ζ of the magnitude of the prediction error: σt = ζ|rt−1−Qt−1|. This 

noisy learning rule reduces to the exact (noise-free) Rescorla–Wagner rule  
when ζ→0.

As in existing theories, we modeled the choice process using a stochastic 
softmax action selection policy, controlled by an inverse temperature β and an 
optional choice hysteresis ξ:

at  B
1

1þ exp �β Qt;A � Qt;B

� 
� ξ sign at�1ð Þ

� 
 !

where B(.) denotes the Bernoulli distribution, and Qt,A and Qt,B correspond to 
the values associated with actions A and B, coded as +1 for A and −1 for B. This 
stochastic action selection policy reduces to a purely greedy (value-maximizing) 
argmax policy when β→∞. For a more detailed description of the computational 
model, see Supplementary Modeling.

Model fitting procedure. Fits for all models were based on Monte Carlo 
methods39. More precisely, for the exact RL models (without learning noise), 
we used an iterated batch importance sampler (IBIS)40. IBIS is a sequential 
Monte Carlo (SMC) algorithm for exploring a sequence of parameter posterior 
distributions when the likelihoods p(at|a1:t−1,r1:t−1,θ), where θ corresponds to 
model parameters {α,β,ξ}, are tractable. This class of Monte Carlo methods could 
not be used for the noisy RL models (with non-zero learning noise) because the 
corresponding likelihoods become intractable in this case. We thus used the SMC2 
algorithm41 to perform parameter inference for the noisy RL models. Technical 
details about these model fitting procedures can be found in Supplementary 
Modeling. Some analyses required further estimation of the smoothing 
distributions of the trajectories of action values over the course of each block 
p(Q1:n|a1:n,r1:n,θMAP), where n corresponds to the number of trials in each block, and 
θMAP to maxima a posteriori for model parameters {α,ζ,β,ξ}. To obtain samples 
approximately distributed under the smoothing distributions, we used the forward 
filter backward simulator (FFBSi)42,43 to obtain K samples ~Q1:n;k

I
.

Model recovery procedure. We implemented a model recovery procedure to 
test the robustness of our model fitting and selection procedures. The recovery 
procedure consists of simulating our three candidate models of interest (model 
1, exact RL with softmax policy; model 2, noisy RL with softmax policy; model 
3, noisy RL with argmax policy), and applying our model fitting and selection 
procedures to obtained simulations to test whether we can accurately recover the 
simulated model. We simulated each model 29 times (once for each subject in 
experiment 1) and used the posterior means obtained by fitting the models to each 
participant as parameter values. Thus, for model 1 (exact RL with softmax policy) 
and 3 (noisy RL with argmax policy), we set parameter values to the posterior 
means obtained by fitting models 1 and 3 to each subject. For model 2 (noisy RL 
with softmax policy), the softmax and learning noise parameters were set to best-
fitting values obtained with models 1 and 3, respectively. We decided to use these 
parameter values to produce simulations in which the two sources of variability 
in the model (that is, learning noise and choice stochasticity) generated the same 
amount of behavioral variability. This recovery procedure provides an external 
validation for the tested models: their sources of variability are recoverable  
from behavior.

Computing the mutual information of successive decisions. We estimated the 
mutual information MIt of successive actions {at − 1,at} as a model-free behavioral 
metric to distinguish best fits of exact (noise-free) and noisy RL models of human 
behavior using the following standard equation:

MIt ¼
X

at�12 A;Bf g

X
at2 A;Bf g p at�1; atð Þlog p at�1; atð Þ

p at�1ð Þp atð Þ

 

For both exact and noisy RL models, we simulated decisions using parameter 
values fitted to the behavioral data, and compared the trade-off between the 
fraction of non-greedy decisions and the mutual information between consecutive 
decisions. The exact and noisy RL models predicted quantitatively different trade-
offs between these two metrics, to falsify the exact RL model, which could not 
account for the trade-off obtained using human data.

Distinguishing learning noise from choice stochasticity. In experiments 1 and 2, 
we estimated the fraction of non-greedy decisions that could be accounted for by 
learning noise. First, to label a decision as non-greedy, we fitted the exact RL model 
to the behavior of the participants and labeled every decision for which action 
values {Qt,A,Qt,B} predicted by the exact model favored the unchosen action as non-
greedy3. Second, we fitted the noisy RL model to the behavior of participants and 
estimated the smoothing distributions of action values throughout each block. We 
then labeled as noise-driven the non-greedy decisions for which noisy realizations 
of the learning rule resulted in an opposite ranking of action values ~Qt;A; ~Qt;B

� �

I
 to 

exact (noise-free) applications of the same rule:

sign Qt;A � Qt;B

� �
≠sign ~Qt;A � ~Qt;B

� �
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We report in the main text the fraction of non-greedy decisions labeled as 
noise-driven, which would approach 1 for a noisy learner relying on a deterministic 
argmax action selection policy, and 0 for an exact learner relying on a stochastic 
softmax action selection policy.

For the estimation of the behavioral variability generated by learning noise and 
choice stochasticity separately, we used the following procedure. First, we estimated 
the behavioral variability generated by learning noise alone by computing the s.d. 
of the difference between noisy action values ~Qt

I
 obtained through smoothing 

distributions and action values ~Qt
I

 obtained through exact (noise-free) applications 
of the Rescorla–Wagner rule to noisy action values in the previous trial ~Qt�1

I
. 

Second, we estimated the behavioral variability generated by choice stochasticity 
alone by approximating the logistic (softmax) distribution as the cumulative 
probability density function of a normal distribution (see Supplementary Modeling 
for the full analytical derivation). From this approximation, we obtained the s.d. 
that best approximates a logistic distribution of inverse temperature β as π= β

ffiffiffi
3

p� 

I
.

Obtaining the bias–variance decomposition of learning noise. To decompose 
learning noise into systematic and random deviations from the Rescorla–Wagner 
rule, we estimated the consistency of human decisions across repetitions of the 
exact same sequence of rewards (experiment 3). We restricted this experiment 
to the complete outcome condition for two important reasons. First, we wanted 
behavioral variability to be driven solely by learning noise and not by a softmax 
action selection policy (noisy versus exact RL, BF ≈ 10411.8, exceedance P > 0.999; 
argmax versus softmax policy, BF ≈ 106.3, exceedance P = 0.997). Second, we wanted 
the action values predicted by an exact RL model to be identical across the two 
repetitions of the same block, irrespective of the decisions made in the two repeated 
blocks. This was ensured by the observation that, as in previous experiments, 
participants learned equally from obtained (chosen) and foregone (unchosen) 
rewards in this additional dataset (learning rate α, chosen, 0.571 ± 0.036; unchosen, 
0.597 ± 0.038, paired t-test, t29 = 1.6, P = 0.123, BFH0 = 1.7). Beyond this absence 
of difference in mean learning rates, validated by BMS (BF ≈ 1016.0, exceedance 
P > 0.999), learning rates associated with chosen and unchosen actions were 
also highly correlated across participants (linear correlation, r2 = 0.821, d.f. = 28, 
P < 0.001). This pattern of findings indicates that the action values predicted by 
exact RL in a given trial do not depend on decisions made in earlier trials (which 
are likely to differ to some extent across the two repetitions of the same block).

We then relied on the observed consistency of human decisions across repeated 
blocks to split learning noise into a predictable bias term reflecting systematic 
deviations from the Rescorla–Wagner rule and an unpredictable variance term, 
reflecting random deviations around this canonical rule. Indeed, systematic 
deviations tend to increase the consistency of decisions across repeated blocks, 
whereas random deviations tend to decrease this consistency. In practice, we fitted 
the noisy RL model to each participant and then simulated versions of the model 
in which learning noise was split into two additive terms: a predictable bias term 
with noise realizations that were duplicated in the two repetitions of each block, 
and an unpredictable variance term with noise realizations that were sampled 
independently across repeated blocks. We varied this bias–variance trade-off from 
zero (fully predictable) to one (fully unpredictable) in 100 equally spaced steps for 
the simulations of each participant, and found the split that best accounted for the 
consistency of human decisions across repeated blocks.

Computing choice sensitivity to action values. We estimated the choice sensitivity 
of participants to action values by fitting a logistic regression model to the decision 
of each participant in trial t at∈{A,B} as a function of the difference in action values 
Q̂t;A � Q̂t;B

I
 predicted by exact applications of the Rescorla–Wagner rule to noisy 

action values ~Qt�1;A � ~Qt�1;B

I
 in the previous trial t−1:

p at ¼ Að Þ ¼ Φ β0 þ β1 Q̂t;A � Q̂t;B

� �� �

where β0 corresponds to a choice bias, β1 corresponds to the choice sensitivity to 
action values and Φ(·) corresponds to the sigmoid function. We used the action 
values Q̂t;A

I
 and Q̂t;B

I
 predicted by exact (noise-free) applications of the Rescorla–

Wagner rule on the last update step, such that the decision variability in trial t 
was unaccounted for by action values Q̂t;A

I
 and Q̂t;B

I
, and estimated by the choice 

sensitivity β1 to action values.

Computing regressors for model-based neuroimaging and pupillometry. 
In experiment 1, we regressed canonical choice- and outcome-locked BOLD 
responses at each voxel against four trial-wise quantities derived from the noisy 
RL model fitted to the behavior of each participant: the similarity between action 
values following each update step (choice conflict), the difference between chosen 
and unchosen action values (choice value), the prediction error associated with the 
obtained reward, and the magnitude of learning noise corrupting the associated 
update of action values. This final quantity, which was specific to our noisy 
RL model, was computed as the predicted deviation |εt| of noisy action values 
following each update step from the exact application of the Rescorla–Wagner rule 
to the same update step:

εtj j ¼ ~Qt � ~Qt�1 þ α  rt�1 � ~Qt�1

� �� ��� ��

where ~Qt
I

 refers to noise-corrupted action values predicted by the noisy RL model 
conditioned on all observed rewards r1:n and all actions a1:n made by the participant. 
In practice, because summary statistics for ~Qt

I
 cannot be derived analytically, 

particle smoothing procedures were used to draw samples from the posterior 
distributions and |εt| was averaged across drawn samples (see Supplementary 
Modeling for more details). Importantly, the corresponding general linear model 
was constructed using sequential orthogonalization to ensure that the noise 
regressor captured residual BOLD variance unaccounted for by the previous 
regressors, which were also predicted by the exact RL model. In experiment 2, 
we regressed phasic pupillary dilation at each time sample around the onset of 
each choice period against three trial-wise quantities derived from the noisy RL 
model fitted to the behavior of each participant: choice conflict, choice value and 
the magnitude of learning noise corrupting the preceding update of action values. 
This final quantity was defined as described above for the model-based analysis 
of BOLD signals. We omitted the prediction error associated with the obtained 
reward in pupillometric analyses because it was not expected to trigger reliable 
modulations of pupillary dilation.

Neuroimaging data acquisition and preprocessing. A Siemens Prisma 3 T 
scanner (Centre de Neuroimagerie de Recherche, Paris, France) and a 64-channel 
head coil were used to acquire both high-resolution T1-weighted anatomical MRI 
using a 3D MPRAGE with a resolution of 1 mm3 (isometric) and T2*-weighted 
multiband-echo planar imaging (mb-EPI) with a multiband factor of 3 and an 
acceleration factor of 2 (GRAPPA). Parameters for fMRI time-series acquisition 
were as follows: 54 slices acquired in ascending order, an isometric voxel size 
of 2.5 mm, a repetition time of 1.1 s and an echo time of 25 ms. A tilted plane 
acquisition sequence was used to optimize sensitivity to BOLD signal in the 
orbitofrontal cortex44,45. Preprocessing included co-registration of the anatomical 
T1 images with the mean EPI, segmentation and normalization to a standard 
T1 template, and averaging across participants to allow group-level anatomical 
localization.

Preprocessing of functional mb-EPI sequences consisted of spatial realignment, 
movement correction, reconstruction and distortion correction and normalization 
using the same transformation applied to structural T1 images. Normalized 
images were spatially smoothed using a Gaussian kernel with a full width at a half 
maximum of 8 mm. All preprocessing steps except distortion correction were 
performed using SPM12 (Wellcome Trust Center for Neuroimaging, London, UK; 
www.fil.ion.ucl.ac.uk). Distortion correction was performed using image unwarping 
and reconstruction as implemented in the FMRIB Software Library (FSL)46.

Predicting behavioral variability from neurophysiological signals. We 
formulated a brain–behavior analysis to predict behavioral variability on the basis 
of neurophysiological signals: trial-to-trial BOLD fluctuations in five ROIs (the 
dACC, the right dlPFC, the PPC, the FPC and the vmPFC) in experiment 1, and 
trial-to-trial pupillary fluctuations in experiment 2. In both experiments, we first 
standardized the decision variable used by each participant (corresponding to a 
decision sensitivity of one and an unbiased decision criterion) by fitting a standard 
logistic regression model to the decision of each participant in trial t at∈{A,B} 
as a function of the difference in action values Q̂t;A � Q̂t;B

I
 predicted by exact 

applications of the Rescorla–Wagner rule to noisy action values ~Qt�1;A � ~Qt�1;B

I
 in 

the previous trial t−1:

p at ¼ Að Þ ¼ Φ β0 þ β1 Q̂t;A � Q̂t;B

� �� �

where β0 and β1 correspond to the two fitted parameters of the logistic regression 
model. Note that we used the action values predicted by exact (noise-free) applications 
of the Rescorla–Wagner rule on the last update step, such that neurophysiological 
signals could be used to predict the behavioral effect of learning noise on the last 
update step. We could then compute a standardized decision variable corresponding 
to the adjusted difference in action values ΔQ* ¼ β*0 þ β*1 Q̂t;A � Q̂t;B

� �

I
, where β*0

I
 

and β*1
I

 correspond to best-fitting parameter values. This first standardization step 
allowed the average sensitivity of each participant to action values to be set to the 
same value. This adjusted difference in action values ΔQ* was then used in all brain–
behavior analyses described below.

In experiment 1, we used a logistic regression model to predict the decision 
of each participant to select either action as a function of the adjusted difference 
in action values ΔQ*, and single-trial deconvolved BOLD responses in the five 
ROIs. The use of such a forward model of behavior, in which BOLD responses 
in the different ROIs can be included simultaneously, enables their shared 
variance to be accounted for. We entered single-trial BOLD responses xt in the 
model as modulators of the sensitivity of participants to the adjusted difference 
between action values in the form of an interaction term xt*ΔQ*. We followed a 
fully factorial scheme by constructing and estimating the posterior probabilities 
associated with all possible combinations of ROIs (32 = 25) using maximum 
likelihood estimation. We could then estimate the family-wise probability of each 
ROI to modulate sensitivity independently of the involvement of other ROIs. Note 
that, in contrast to posterior probabilities, these family-wise probabilities do not 
sum to one: they would all equal zero if no ROI modulates sensitivity, and all equal 
one if all ROIs modulate sensitivity.
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In experiments 1 and 3, we further tested whether the negative modulation 
of sensitivity by dACC responses and pupillary fluctuations, respectively, could 
be caused not by random fluctuations in action values (as predicted by learning 
noise), but rather by directed fluctuations in the value of switching away from the 
previous action (as predicted by adjustments of the exploration–exploitation trade-
off). To test this alternative brain–behavior relationship, we modified the logistic 
regression model to predict the decisions of participants to switch away from 
their previous action (that is, at≠at−1) as a function of the difference between the 
value of switching Q̂t;switch ¼ Q̂t at≠at�1ð Þ

I
 and the value of repeating the previous 

action Q̂t;repeat ¼ Q̂t at ¼ at�1ð Þ
I

. We used the same standardization step described 
above to compute the adjusted difference in action values ΔQ*, this time between 
switching and repeating the previous action rather than between actions A and B. 
We then entered single-trial neurophysiological signals (either dACC responses 
or pupillary dilation) at trial t xt in the model not only as a modulator of the 
sensitivity of participants to the value difference between switching and repeating 
in the form of an interaction term xt*ΔQ*, but also as a modulator of the value of 
switching in the form of an additive term xt. Because the same neurophysiological 
signal could simultaneously predict random and directed effects, we again followed 
a fully factorial scheme by constructing and estimating the model evidence 
associated with the 4 = 22 combinations of the two possible modulations using 
maximum likelihood estimation.

Statistical procedures. Standard paired t-tests were used to compare conditions 
at the group level. Data distribution (individual data points shown on the main 
figures) was assumed to be approximately normal, and was therefore not formally 
tested for normality. When standard t-tests yielded non-significant results with 
a meaningful interpretation, we performed an additional Bayesian test to obtain 
the BFH0 throughout the main text. This Bayesian test was performed using the 
BayesFactor library in the R language, using default priors47.

BMS analyses used the unbiased estimate of the marginal likelihood  
obtained from the model fitting procedure as the model evidence metric  
(see Supplementary Modeling). This metric integrates over parameters and thus 
penalizes model complexity without requiring an explicit penalization term.  
BMS was conducted using separate fixed-effects and random-effects approaches. 
The fixed-effects approach assumes that all participants are relying on the  
same model, and consists of comparing the log-marginal likelihood summed 
across participants for each tested model. By contrast, the random-effects  
approach assumes that different participants may rely on different models, 
and consists of estimating the Dirichlet distribution over models from which 
participants draw48, as implemented in the SPM12 software package (Statistical 
Parametric Mapping).

Reporting Summary. Further information on the research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The data (behavioral, neuroimaging and pupillometric) that support these findings 
are available from the corresponding author upon request.

Code availability
Python and C++ code for fitting all computational models described in the 
article are available at https://github.com/csmfindling/learning_variability. The 
algorithmic backbone of the Monte Carlo procedures used to fit models can be 
found in Supplementary Modeling Note.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The experimental paradigm used in this study is a restless, two-armed bandit task. The behavioral data collected were quantitative and 
consisted of participants' choices and reaction times. Additionally, we collected quantitative whole-brain BOLD signals (in experiment 1) 
and pupil dilation (in experiment 3).

Research sample Experiment 1 (n = 30): 16 females, age: 26.0 +/− 5.5 years (behavior + fMRI) 
Experiment 2 (n = 30): 17 females, age: 23.6 +/− 4.6 years (behavior + pupillometry) 
Experiment 3 (n = 30): 19 females, age: 24.2 +/− 3.7 years (behavior) 
All participants were recruited through the web-based recruitment platform of our university (RISC - http://expesciences.risc.cnrs.fr/). No 
statistical methods were used to pre-determine sample sizes but our sample sizes are similar or larger to those reported in previous 
publications (Daw, N. D et al., 2006; Drugowitsch, J., Wyart, V et al., 2016; Palminteri, S., et al. 2015)

Sampling strategy No power analysis could be performed for this study since the new reinforcement learning model we developed to fit participants' 
choices had never been tested before. The chosen sample size of n = 30 in all three experiments is matches the commonly accepted 
good practices in this field. In particular, the chosen sample size was determined a priori for all three experiments.

Data collection The behavioral data were collected using the Psychtoolbox-3 toolbox for MATLAB; pupillometric signals were collected using an EyeLink  
eye-tracker; BOLD fMRI data were collected using a Siemens Prisma 3T scanner.

Timing Experiment 1: Jan 2017 - Mar 2017. Experiment 2: Jan 2016 - Feb 2016. Experiment 3: Nov 2017

Data exclusions Experiment 1 (behavior & fMRI): 1 participant was excluded because he/she failed to understand task instructions and performed at 
chance level. Experiment 2 (behavior): no participant was excluded. Experiment 2 (pupillometry) : 6 participants were excluded because 
low-quality pupillometric signals.  Experiment 3 (behavior): no participant was excluded.

Non-participation No participant cancelled his/her participation from any of the three experiments.

Randomization Participants were not allocated into distinct experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Experiment 1 (fMRI) : 16F/14M, age: 26.0 +/− 5.5 years, all healthy with no history of neurological or psychiatric disorders. All 
subjects were right-handed and had normal or corrected-to-normal vision. 
Experiment 2:  17F/13M, age: 23.6 +/− 4.6 years, all healthy with no history of neurological or psychiatric disorders. All subjects 
had normal or corrected-to-normal vision. 
Experiment 3 : 19F/11M, age: 24.2 +/− 3.7 years, all healthy with no history of neurological or psychiatric disorders. All subjects 
had normal or corrected-to-normal vision.

Recruitment All participants were recruited through the web-based recruitment platform of our university.

Ethics oversight Comité de Protection des Personnes Ile-de-France VI, ID RCB: 2007-A01125-48, 2017-A01778-45

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging
Experimental design

Design type Experiment 1: task, event-related design for fMRI analyses (see below) 
Experiment 2: task, event-related design for pupillometric analyses (see below) 
Experiment 3: task (see below)

Design specifications Experiment 1: 8 blocks of 56 trials each, partial/complete outcome x free/cued trials 
Experiment 2: 8 blocks of 96 trials each, partial/complete outcome 
Experiment 3: 16 blocks of 56 trials each, seed/replay block

Behavioral performance measures Fraction of trials where the action associated with the largest underlying mean reward is selected.

Acquisition

Imaging type(s) Functional and structural images

Field strength 3T

Sequence & imaging parameters High resolution T1-weighted anatomical MRI using a 3D MPRAGE with a resolution of 1mm3 voxel and T2*-weighted 
multiband-echo planar imaging (mb-EPI) with multi-band factor of 3 and acceleration factor of 2 (GRAPPA). 

Area of acquisition Whole-brain acquisition

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Preprocessing of the mb-EPI consisted of spatial realignment, movement correction, reconstruction and distortion 
correction, and normalization using the same transformation as applied for the structural images. Normalized images 
were spatially smoothed using a Gaussian kernel with a full width at a half-maximum of 8 mm. All the preprocessing 
except for the distortion correction was done using the SPM12 (Wellcome Trust Center for NeuroImaging, London, UK; 
ww.fil.ion.ucl.ac.uk). Distortion correction consisted of image unwarping and reconstruction done using FSL software. 

Normalization Normalized, non-linear

Normalization template MNI305 

Noise and artifact removal Six motion parameters were included in every GLM specified for fMRI BOLD signal analysis to correct for motion 
artifacts. 

Volume censoring No volumes/scans were excluded from the analyses reported in the article.

Statistical modeling & inference

Model type and settings First-level : univariate. Second-level : random effects (unless noted otherwise).

Effect(s) tested One-sample t-tests against zero. 

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Automatic labeling and probabilistic atlas

Statistic type for inference
(See Eklund et al. 2016)

Cluster-wise

Correction FWE, cluster-wise at whole-brain level

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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